
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Recursive Descent Parsers

© 2023 Arthur Hoskey. All
rights reserved.

Top-down vs Bottom-up Parsing

 Top-down parsing. Begin with the start symbol and keep doing
substitutions until only terminals are left.

 Bottom-up parsing. A bottom-up parser starts with terminals
and does substitutions in reverse until only the start symbol is
left.

© 2023 Arthur Hoskey. All
rights reserved.

S

A

B

b

S

A

B

b

Top-down

parsing

(go from start

symbol to

terminals)

Bottom-up

parsing (go

from terminals

to start symbol)

Grammar
S → A
A → B
B → b

Recursive Descent Parsers and
LL(1)

 Recursive descent parsers work on LL(1) grammars.

 LL(1)
◦ The first L means scan input from left to right.

◦ The second L means do a left-most derivation.

◦ The 1 means there is one character of lookahead.

 A recursive descent parser is a top-down parser.

© 2023 Arthur Hoskey. All
rights reserved.

Recursive Descent Parsing
Overview

Recursive Descent Parsing Overview

Setup a Recursive Descent Parser

 Nonterminals. Write methods for each nonterminal on the
LHS.

 Terminals. Use an enum to define tokens that correspond
to the terminals.

Parsing

 Parsing Nonterminals. To process or substitute for a
nonterminal call its corresponding method.

 Parsing terminals. Use if statements to check for a given
terminal. If the next token is the one you are checking for
then read the next token from the input stream (this is
matching the terminal).

© 2023 Arthur Hoskey. All
rights reserved.

Processing Nonterminals

 Sample grammar:

S → AB

A → a

B → b

 Each nonterminal has a corresponding method. This grammar has three
nonterminals so we will need three methods.

 To process or substitute for a nonterminal in a RHS call the method that
corresponds to the nonterminal.

S()

A()

B()

A()

// Code to recognize terminal a goes here

B()

// Code to recognize terminal b goes here

© 2023 Arthur Hoskey. All
rights reserved.

Call A() to process the A nonterminal of S→AB

Call B() to process the B nonterminal of S→AB

The S() method corresponds to the S→AB production

The A() method corresponds

to the A→a production

The B() method corresponds

to the B→b production

Processing Terminals

 Sample grammar:

S → AB

A → a

B → b

 Check if the next token matches what is supposed to be there.

 In the example below, if A() is called then it must match the terminal a.

S()

A()

B()

A()

If (nextToken != TOKEN.a)

 Display error message

nextToken = getNextToken()

B()

If (nextToken != TOKEN.b)

 Display error message

nextToken = getNextToken()

© 2023 Arthur Hoskey. All
rights reserved.

If method A() is called, then terminal a should

be the next token in the input stream

If method B() is called, then terminal b should

be the next token in the input stream

Get the next token

Basic Rules for a Recursive
Descent Parser

 Here are the basic rules for creating recursive descent
parsers:

 Write Methods for Nonterminals. Each nonterminal
corresponds to a method. For example, if there is a production
A→r then there will need to define a method A().

 Call Nonterminal Methods. When doing a substitution for a
nonterminal call the method that corresponds to that
nonterminal. For example, A().

 Check Next Token for Expected Terminals. Use if
statements to check if the next terminal is what is expected.
If the next token is what was expected, then consume it.

 Read Next Token to Consume Terminals. When
consuming a terminal read the next token in the input stream.

© 2023 Arthur Hoskey. All
rights reserved.

Recursive Descent Parsers

 The following slides will show different grammars
and recursive descent parsers for those
grammars.

© 2023 Arthur Hoskey. All
rights reserved.

Recursive Descent Parsers –
Parser Class Member Variables

Parser Class Member Variables

 Assume that a Scanner class has been defined.
◦ The Scanner class has the TOKEN enum defined inside of it.

◦ The Scanner class has a scan() method that returns a TOKEN (this is
the next token in the input stream).

Class Parser {

 Declare Scanner scanner

 Declare Scanner.TOKEN nextToken

}

© 2023 Arthur Hoskey. All
rights reserved.

Scanner will be used to get

tokens from the input stream

Stores the next token. This will be populated by

calling the scan() method on the Scanner class. The

token enum is defined in the Scanner class.

Recursive Descent Parsers –
Parser Helper Methods

Parser Helper methods

 getNextToken() – Reads the next token from the input
stream (use the scanner to do this).

 error() – Should print an error message. You can also stop
parsing at this point. A real compiler would likely keep
going even with the error though.

getNextToken() returns Scanner.TOKEN

nextToken = Scanner.scan()

error(String message)

Print message

Exit program

© 2023 Arthur Hoskey. All
rights reserved.

Recursive Descent Parsers

 Tokens: ID, EOF

 Here is a grammar that only allows one id (an identifier).

S → id

 There is a nonterminal so S in this grammar so there needs to be a
method for it.

 Inside the method S it expects to find an id in the input stream.

 The only valid token for this grammar is ID.

parse()

getNextToken()

S()

If (nextToken == EOF) print "Success"

Else print "Unmatched EOF"

S()

If (nextToken == ID)

 getNextToken()

 Return

error("S() failed")

© 2023 Arthur Hoskey. All
rights reserved.

Match the terminal ID token

Match the terminal EOF

token (comes after

matching S nonterminal)

Match the nonterminal S by calling S()

Get the next token and store it in the

Parser's nextToken member variable

The ID token was matched so get the nextToken

to match (stores the next token in the Parser

nextToken member variable)

Recursive Descent Parsers

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar:

S → id = intliteral

Write pseudocode for a recursive descent parser of the above
grammar. Start with a method named parse.

© 2023 Arthur Hoskey. All
rights reserved.

An INTLITERAL is

just an integer

constant

Recursive Descent Parsers

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar:

S → id = intliteral

parse()

getNextToken()

S()

If (nextToken == EOF) print "Success"

Else print "Unmatched EOF"

S()

If (nextToken == ID)

 getNextToken()

 If (nextToken == EQUALS)

 getNextToken()

 If (nextToken == INTLITERAL)

 getNextToken()

 Return

error("S() failed")

© 2023 Arthur Hoskey. All
rights reserved.

Match the terminal id

Match the terminal =

Match the terminal for an int

literal (a constant)

Match EOF after S

Recursive Descent Parsers

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar:

S → A

A → id = intliteral

Write pseudocode for a recursive descent parser of the above grammar.
Start with a method named parse.

© 2023 Arthur Hoskey. All
rights reserved.

Recursive Descent Parsers

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar:

S → A

A → id = intliteral

parse()

getNextToken()

S()

If (nextToken == EOF) print "Success"

Else print "Unmatched EOF"

S()

A()

A()

If (nextToken == ID)

 getNextToken()

 If (nextToken == EQUALS)

 getNextToken()

 If (nextToken == INTLITERAL)

 getNextToken()

 Return

error("A() failed")

© 2023 Arthur Hoskey. All
rights reserved.

Call the A() method to match the

nonterminal A

Define a method A() for the

nonterminal A

The method A() should be called to match

this right side

Recursive Descent Parsers

 Assume the following grammar (S is start symbol):

S → Expr

Expr → id ExprEnd

ExprEnd → = id ExprEnd | ε

 What are the first, follow, and first+ sets?

© 2023 Arthur Hoskey. All
rights reserved.

The empty string is

a possibility here

Recursive Descent Parsers

 Assume the following grammar (S is start symbol):

S → Expr

Expr → id ExprEnd

ExprEnd → = id ExprEnd | ε

 What are the first, follow, and first+ sets?

First(ExprEnd) = { =, ε }

First(Expr) = { id }

First(S) = First(Expr) = { id }

Follow(S) = { eof }

Follow(Expr) = Follow(S) = { eof }

Follow(ExprEnd) = Follow(Expr) = { eof }

First+(ExprEnd → ε) = Follow(ExprEnd) = { eof }

First+(ExprEnd → = id ExprEnd) = { = }

First+(Expr → id ExprEnd) = { id }

First+(S → Expr) = { id }

© 2023 Arthur Hoskey. All
rights reserved.

Two productions have ExprEnd as the lhs.

 The first+ sets of these productions do

NOT intersect!

This means the choice of which

production to use when processing the

nonterminal ExprEnd is unambiguous.

If nextToken is = then use:

 ExprEnd → = id ExprEnd

If nextToken is eof then use:

 ExprEnd → ε

Recursive Descent Parsers

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

S → Expr

Expr → id ExprEnd

ExprEnd → = id ExprEnd | ε

© 2023 Arthur Hoskey. All
rights reserved.

The empty string is

a possibility here

This grammar recognizes

an id followed by "= id" an

arbitrary number of times

Recursive Descent Parsers

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → id ExprEnd

ExprEnd → = id ExprEnd | ε

parse()

getNextToken()

Expr()

If (nextToken == EOF) print "Success"

Else print "Unmatched EOF"

Expr()

If (nextToken == ID)

 getNextToken()

 ExprEnd()

ExprEnd()

If (nextToken == EQUALS)

 getNextToken()

 If (nextToken == ID)

 getNextToken()

 ExprEnd()

 Else

 error("Expected ID")

If (nextToken == EOF)

 Return

error("ExprEnd() failed")

© 2023 Arthur Hoskey. All
rights reserved.

ExprEnd → = id ExprEnd

Match EQUALS then match ID. If it matched them

both then it recursively calls ExprId(). The

recursive call allows it to keep matching "= id" an

arbitrary number of times. First+ set is { = }.

ExprEnd → ε

Checking for EOF here determines if we should

use the empty string. EOF is in the Follow set of

ExprEnd (for this grammar). If EOF is there, then

we should use ExprEnd→ ε. First+ set is { eof }.

This grammar recognizes

an id followed by "= id" an

arbitrary number of times

Recursive Descent Parsers –
Additional Parser Helper Method

Additional Parser Helper Method

 match() – Checks if a target token was matched and also
reads the next token from the input stream.

match(Scanner.TOKEN expectedToken) returns boolean

If (nextToken == expectedToken)

 getNextToken()

 return true

Print "Token mismatch"

Return false

© 2023 Arthur Hoskey. All
rights reserved.

Checks if the next token is the

same as what is expected

If the expected token was matched, then

get the next token and return true

If we get here, then the expected

token was NOT matched

Using match()

 Tokens: ID, EOF

 Here is a grammar that only allows one id (an identifier).

S → id

 There is a nonterminal so S in this grammar so there needs to be a
method for it.

 Inside the method S it expects to find an id in the input stream.

 The only valid token for this grammar is ID.

parse()

getNextToken()

S()

If (match(EOF)) print "Success"

Else print "Unmatched EOF"

S()

If (!match(ID))

 error("S() failed")

© 2023 Arthur Hoskey. All
rights reserved.

Match the terminal ID token

Match the terminal EOF

token (comes after

matching S nonterminal)

Match the nonterminal S by calling S()

If it did not match an ID, then

an error occurred

Using match – Example 1

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar:

S → id = intliteral

Write the parse() and S() methods using the match() helper method.

© 2023 Arthur Hoskey. All
rights reserved.

Using match – Example 1

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar:

S → id = intliteral

Write the parse() and S() methods using the match() helper method.

parse()

getNextToken()

S()

If (match(EOF)) print "Success"

Else print "Unmatched EOF"

S()

If (match(ID))

 If (match(EQUALS))

 If (match(INTLITERAL))

 Return

error("S() failed")

© 2023 Arthur Hoskey. All
rights reserved.

Note: Match will test for the given

token and then get the next token if

the test was successful

When S() is called it must match an

ID followed by EQUALS followed by

INTLITERAL. If it does not, then

there is an error.

Using match – Example 2

 Tokens: COLON, ID, PLUS, INTLITERAL, EOF

 Assume the following grammar:

S → A

A → : id

A → + intliteral

Write the S() and A() methods using the match() helper method (assume parse is
the same as the previous example).

© 2023 Arthur Hoskey. All
rights reserved.

parse()
getNextToken()
S()
If (match(EOF)) print "Success"
Else print "Unmatched EOF"

Using match – Example 2

 Tokens: COLON, ID, PLUS, INTLITERAL, EOF

 Assume the following grammar:

S → A

A → : id

A → + intliteral

Write the S() and A() methods using the match() helper method (assume parse is
the same as the previous example).

S()

A()

A()

If (nextToken == COLON)

 If (match(COLON))

 If (match(ID))

 Return

If (nextToken == PLUS)

 If (match(PLUS))

 If (match(INTLITERAL))

 Return

error("S() failed")

© 2023 Arthur Hoskey. All
rights reserved.

A() checks for COLON and PLUS. If it

finds either one, then it matches tokens

accordingly. If it does not find either one,

then an error has occurred (the RHSs of

each A production respectively start with

COLON and PLUS).

parse()
getNextToken()
S()
If (match(EOF)) print "Success"
Else print "Unmatched EOF"

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Top-down vs Bottom-up Parsing
	Slide 4: Recursive Descent Parsers and LL(1)
	Slide 5: Recursive Descent Parsing Overview
	Slide 6: Processing Nonterminals
	Slide 7: Processing Terminals
	Slide 8: Basic Rules for a Recursive Descent Parser
	Slide 9: Recursive Descent Parsers
	Slide 10: Recursive Descent Parsers – Parser Class Member Variables
	Slide 11: Recursive Descent Parsers – Parser Helper Methods
	Slide 12: Recursive Descent Parsers
	Slide 13: Recursive Descent Parsers
	Slide 14: Recursive Descent Parsers
	Slide 15: Recursive Descent Parsers
	Slide 16: Recursive Descent Parsers
	Slide 17: Recursive Descent Parsers
	Slide 18: Recursive Descent Parsers
	Slide 19: Recursive Descent Parsers
	Slide 20: Recursive Descent Parsers
	Slide 21: Recursive Descent Parsers – Additional Parser Helper Method
	Slide 22: Using match()
	Slide 23: Using match – Example 1
	Slide 24: Using match – Example 1
	Slide 25: Using match – Example 2
	Slide 26: Using match – Example 2
	Slide 27: End of Slides

